Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

نویسندگان

  • Alberto Katsumiti
  • Douglas Gilliland
  • Inmaculada Arostegui
  • Miren P. Cajaraville
  • Wei-Chun Chin
چکیده

Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bystander Effects of Ultraviolet Radiation and Silver Nanoparticles on the H2AX gene expression in TK6 Cells

Introduction: The radiation induced bystander effect (BSE) is the induction of biological changes in unexposed cells, by signals transmitted from bystander cells that cause the spread of radiation toxicity to adjacent or far tissues. In addition, reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as cytokines are involved in mediating mechanisms in bystande...

متن کامل

In Vitro Toxicity of the Naked and Serum-treated Nanoparticles on Cardiomyocytes

Background and Aims: Although metal and metal oxide nanoparticles are used in different medical applications, they may have considerable toxicity on various cells, such as myocytes. Therefore, this study aimed to evaluate the toxicity of the naked and serum-treated silver nanoparticles (Ag NPs) and magnesium oxide nanoparticles (MgO NPs) on the cardiomyocytes. Materials and Methods: Cardiomy...

متن کامل

Antibacterial effect assessment of ZnS: Ag nanoparticles

Objective(s): A large ratio of surface to volume of nanoparticles in comparison with bulk ones, will increase the cell penetration and therefore their toxicity. Materials and Methods: Chemical precipitation method was used in order to synthesis of ZnS:Ag quantum dots. Their Physical properties and characteristics were assessed by X-ray diffraction, Ultra Violet-Visible Spectrophotometer, Transm...

متن کامل

The Cytotoxicity of Silver Nanoparticles Coated with Different Proteins on Balb/c Macrophage Cells

Background and Aims: Coated nanoparticles have different surface chemistry, aggregation, and interaction properties. The aim of this study was to investigate the cytotoxicity of silver nanoparticles AgNPs coated with different proteins on Balb/c macrophages. Materials and Methods: In this study these items were evaluated: 1) the size of aggregation, 2) the quantity and mechanisms of uptake, ...

متن کامل

The effect of Ag NPs co-exposure with UVC irradiation on TK6 cells viability

Introduction: Because of advancement in nanotechnology, the use of Ag Nanoparticles (NPs) was increased in a wide range of area. Studies that were done in recent years demonstrated that Ag NPs can induce cytotoxicity in cells. One of the parts of UV radiation of sun is UVC (200 – 280 nm) that has antimicrobial effect. Since the effect of simultaneous use of NPs and UVC are sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015